Factoring $(16, 6, 2)$ Hadamard Difference Sets

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factoring (16, 6, 2) Hadamard Difference Sets

We describe a “factoring” method which constructs all twenty-seven Hadamard (16, 6, 2) difference sets. The method involves identifying perfect ternary arrays of energy 4 (PTA(4)) in homomorphic images of a group G, studying the image of difference sets under such homomorphisms and using the preimages of the PTA(4)s to find the “factors” of difference sets in G. This “factoring” technique gener...

متن کامل

Non-Abelian Hadamard Difference Sets

Difference sets wi th pa rame te r s (v, k, 2) m a y exist even if there are no abelian (v, k, ,~) difference sets; we give the first k n o w n example of this s i tuat ion. This example gives rise to an infinite family of non -abe l i an difference sets w i th pa rameters (4t 2, 2t a t, t 2 t), where t = 2 q. 3 r5 . 1 0 ' , q, r, s >/0, and r > 0 ~ q > 0. N o abel ian difference sets w i th th...

متن کامل

Constructions of Hadamard Difference Sets

Using a spread of PG(3; p) and certain projective two-weight codes, we give a general construction of Hadamard diierence sets in groups H (Z p) 4 , where H is either the Klein 4-group or the cyclic group of order 4, and p is an odd prime. In the case p 3 (mod 4), we use an ovoidal bration of PG(3; p) to construct Hadamard diierence sets, this construction includes Xia's construction of Hadamard...

متن کامل

Hadamard Difference Sets in Nonabelian 2-Groups with High Exponent

Nontrivial difference sets in groups of order a power of 2 are part of the family of difference sets called Hadamard difference sets. In the abelian case, a group of order 22 tq2 has a difference set if and only if the exponent of the group is less tq2 Ž than or equal to 2 . In a previous work R. A. Liebler and K. W. Smith, in ‘‘Coding Theory, Design Theory, Group Theory: Proc. of the Marshall ...

متن کامل

Tightening Turyn’s bound for Hadamard difference sets

This work examines the existence of (4q2,2q2 − q, q2 − q) difference sets, for q = p , where p is a prime and f is a positive integer. Suppose that G is a group of order 4q2 which has a normal subgroup K of order q such that G/K ∼= Cq × C2 × C2, where Cq,C2 are the cyclic groups of order q and 2 respectively. Under the assumption that p is greater than or equal to 5, this work shows that G does...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2008

ISSN: 1077-8926

DOI: 10.37236/836